Explaining Predictive Uncertainty by Exposing Second-Order Effects

30 Jan 2024  ·  Florian Bley, Sebastian Lapuschkin, Wojciech Samek, Grégoire Montavon ·

Explainable AI has brought transparency into complex ML blackboxes, enabling, in particular, to identify which features these models use for their predictions. So far, the question of explaining predictive uncertainty, i.e. why a model 'doubts', has been scarcely studied. Our investigation reveals that predictive uncertainty is dominated by second-order effects, involving single features or product interactions between them. We contribute a new method for explaining predictive uncertainty based on these second-order effects. Computationally, our method reduces to a simple covariance computation over a collection of first-order explanations. Our method is generally applicable, allowing for turning common attribution techniques (LRP, Gradient x Input, etc.) into powerful second-order uncertainty explainers, which we call CovLRP, CovGI, etc. The accuracy of the explanations our method produces is demonstrated through systematic quantitative evaluations, and the overall usefulness of our method is demonstrated via two practical showcases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here