Expected Tight Bounds for Robust Deep Neural Network Training

25 Sep 2019  ·  Salman AlSubaihi, Adel Bibi, Modar Alfadly, Abdullah Hamdi, Bernard Ghanem ·

Training Deep Neural Networks (DNNs) that are robust to norm bounded adversarial attacks remains an elusive problem. While verification based methods are generally too expensive to robustly train large networks, it was demonstrated by Gowal et. al. that bounded input intervals can be inexpensively propagated from layer to layer through deep networks. This interval bound propagation (IBP) approach led to high robustness and was the first to be employed on large networks. However, due to the very loose nature of the IBP bounds, particularly for large/deep networks, the required training procedure is complex and involved. In this paper, we closely examine the bounds of a block of layers composed of an affine layer, followed by a ReLU, followed by another affine layer. To this end, we propose \emph{expected} bounds (true bounds in expectation), which are provably tighter than IBP bounds in expectation. We then extend this result to deeper networks through blockwise propagation and show that we can achieve orders of magnitudes tighter bounds compared to IBP. Using these tight bounds, we demonstrate that a simple standard training procedure can achieve impressive robustness-accuracy trade-off across several architectures on both MNIST and CIFAR10.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here