Expected Density of Cooperative Bacteria in a 2D Quorum Sensing Based Molecular Communication System

1 Dec 2018  ·  Yuting Fang, Adam Noel, Andrew W. Eckford, Nan Yang ·

The exchange of small molecular signals within microbial populations is generally referred to as quorum sensing (QS). QS is ubiquitous in nature and enables microorganisms to respond to fluctuations in living environments by working together. In this study, a QS-based molecular communication system within a microbial population in a two-dimensional (2D) environment is analytically modeled. Microorganisms are randomly distributed on a 2D circle where each one releases molecules at random times. The number of molecules observed at each randomly-distributed bacterium is first derived by characterizing the diffusion and degradation of signaling molecules within the population. Using the derived result and some approximation, the expected density of cooperative bacteria is derived. Our model captures the basic features of QS. The analytical results for noisy signal propagation agree with simulation results where the Brownian motion of molecules is simulated by a particle-based method. Therefore, we anticipate that our model can be used to predict the density of cooperative bacteria in a variety of QS-coordinated activities, e.g., biofilm formation and antibiotic resistance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here