Evidence Aggregation for Treatment Choice

14 Aug 2021  ·  Takuya Ishihara, Toru Kitagawa ·

Consider a planner who has to decide whether or not to introduce a new policy to a certain local population. The planner has only limited knowledge of the policy's causal impact on this population due to a lack of data but does have access to the publicized results of intervention studies performed for similar policies on different populations. How should the planner make use of and aggregate this existing evidence to make her policy decision? Building upon the paradigm of `patient-centered meta-analysis' proposed by Manski (2020; Towards Credible Patient-Centered Meta-Analysis, Epidemiology), we formulate the planner's problem as a statistical decision problem with a social welfare objective pertaining to the local population, and solve for an optimal aggregation rule under the minimax-regret criterion. We investigate the analytical properties, computational feasibility, and welfare regret performance of this rule. We also compare the minimax regret decision rule with plug-in decision rules based upon a hierarchical Bayes meta-regression or stylized mean-squared-error optimal prediction. We apply the minimax regret decision rule to two settings: whether to enact an active labor market policy given evidence from 14 randomized control trial studies; and whether to approve a drug (Remdesivir) for COVID-19 treatment using a meta-database of clinical trials.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here