Evaluating Natural Alpha Embeddings on Intrinsic and Extrinsic Tasks

WS 2020  ·  Riccardo Volpi, Luigi Malag{\`o} ·

Skip-Gram is a simple, but effective, model to learn a word embedding mapping by estimating a conditional probability distribution for each word of the dictionary. In the context of Information Geometry, these distributions form a Riemannian statistical manifold, where word embeddings are interpreted as vectors in the tangent bundle of the manifold. In this paper we show how the choice of the geometry on the manifold allows impacts on the performances both on intrinsic and extrinsic tasks, in function of a deformation parameter alpha.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here