Estimating Risk and Uncertainty in Deep Reinforcement Learning

Reinforcement learning agents are faced with two types of uncertainty. Epistemic uncertainty stems from limited data and is useful for exploration, whereas aleatoric uncertainty arises from stochastic environments and must be accounted for in risk-sensitive applications. We highlight the challenges involved in simultaneously estimating both of them, and propose a framework for disentangling and estimating these uncertainties on learned Q-values. We derive unbiased estimators of these uncertainties and introduce an uncertainty-aware DQN algorithm, which we show exhibits safe learning behavior and outperforms other DQN variants on the MinAtar testbed.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here