Equation Discovery for Nonlinear System Identification

1 Jul 2019  ·  Nikola Simidjievski, Ljupčo Todorovski, Juš Kocijan, Sašo Džeroski ·

Equation discovery methods enable modelers to combine domain-specific knowledge and system identification to construct models most suitable for a selected modeling task. The method described and evaluated in this paper can be used as a nonlinear system identification method for gray-box modeling. It consists of two interlaced parts of modeling that are computer-aided. The first performs computer-aided identification of a model structure composed of elements selected from user-specified domain-specific modeling knowledge, while the second part performs parameter estimation. In this paper, recent developments of the equation discovery method called process-based modeling, suited for nonlinear system identification, are elaborated and illustrated on two continuous-time case studies. The first case study illustrates the use of the process-based modeling on synthetic data while the second case-study evaluates on measured data for a standard system-identification benchmark. The experimental results clearly demonstrate the ability of process-based modeling to reconstruct both model structure and parameters from measured data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here