Epistemic Deep Learning

15 Jun 2022  ·  Shireen Kudukkil Manchingal, Fabio Cuzzolin ·

The belief function approach to uncertainty quantification as proposed in the Demspter-Shafer theory of evidence is established upon the general mathematical models for set-valued observations, called random sets. Set-valued predictions are the most natural representations of uncertainty in machine learning. In this paper, we introduce a concept called epistemic deep learning based on the random-set interpretation of belief functions to model epistemic learning in deep neural networks. We propose a novel random-set convolutional neural network for classification that produces scores for sets of classes by learning set-valued ground truth representations. We evaluate different formulations of entropy and distance measures for belief functions as viable loss functions for these random-set networks. We also discuss methods for evaluating the quality of epistemic predictions and the performance of epistemic random-set neural networks. We demonstrate through experiments that the epistemic approach produces better performance results when compared to traditional approaches of estimating uncertainty.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here