Ensuring Disturbance Rejection Performance by Synthesizing Grid-Following and Grid-Forming Inverters in Power Systems

25 Mar 2024  ·  Fuyilong Ma, Huanhai Xin, Zhiyi Li, Linbin Huang ·

To satisfy dynamic requirements of power systems, it is imperative for grid-tied inverters to ensure good disturbance rejection performance (DRP) under variable grid conditions. This letter discovers and theoretically proves that for general networks, synthesizing grid-following (GFL) inverters and grid-forming (GFM) inverters can always more effectively ensure the DRP of multiple inverters, as compared to homogeneous inverter-based systems that solely utilize either GFL or GFM inverters. The synthesis of GFL inverters and GFM inverters can concurrently increase the smallest eigenvalue and decrease the largest eigenvalue of the network grounded Laplacian matrix. This can be equivalent to rematching the proper short-circuit ratio (SCR) for GFL and GFM inverters, thereby ensuring the DRP of inverters both in weak and strong grids. The results reveal the necessity of synthesizing diverse inverter control schemes from the network-based perspective. Sensitivity function-based tests and real-time simulations validate our results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here