Ensemble Recognition in Reproducing Kernel Hilbert Spaces through Aggregated Measurements

28 Dec 2021  ·  Wei Miao, Gong Cheng, Jr-Shin Li ·

In this paper, we study the problem of learning dynamical properties of ensemble systems from their collective behaviors using statistical approaches in reproducing kernel Hilbert space (RKHS). Specifically, we provide a framework to identify and cluster multiple ensemble systems through computing the maximum mean discrepancy (MMD) between their aggregated measurements in an RKHS, without any prior knowledge of the system dynamics of ensembles. Then, leveraging the gradient flow of the newly proposed notion of aggregated Markov parameters, we present a systematic framework to recognize and identify an ensemble systems using their linear approximations. Finally, we demonstrate that the proposed approaches can be extended to cluster multiple unknown ensembles in RKHS using their aggregated measurements. Numerical experiments show that our approach is reliable and robust to ensembles with different types of system dynamics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here