Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction for Uncertainty Quantification

26 Nov 2022  ·  Xing Yan, Yonghua Su, Wenxuan Ma ·

We propose a novel, succinct, and effective approach for distribution prediction to quantify uncertainty in machine learning. It incorporates adaptively flexible distribution prediction of $\mathbb{P}(\mathbf{y}|\mathbf{X}=x)$ in regression tasks. This conditional distribution's quantiles of probability levels spreading the interval $(0,1)$ are boosted by additive models which are designed by us with intuitions and interpretability. We seek an adaptive balance between the structural integrity and the flexibility for $\mathbb{P}(\mathbf{y}|\mathbf{X}=x)$, while Gaussian assumption results in a lack of flexibility for real data and highly flexible approaches (e.g., estimating the quantiles separately without a distribution structure) inevitably have drawbacks and may not lead to good generalization. This ensemble multi-quantiles approach called EMQ proposed by us is totally data-driven, and can gradually depart from Gaussian and discover the optimal conditional distribution in the boosting. On extensive regression tasks from UCI datasets, we show that EMQ achieves state-of-the-art performance comparing to many recent uncertainty quantification methods. Visualization results further illustrate the necessity and the merits of such an ensemble model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here