Enhancing Near-Field Sensing and Communications with Sparse Arrays: Potentials, Challenges, and Emerging Trends

15 Sep 2023  ·  Songjie Yang, Wanting Lyu, Zhongpei Zhang, Chau Yuen ·

As a promising technique, extremely large-scale (XL)-arrays offer potential solutions for overcoming the severe path loss in millimeter-wave (mmWave) and TeraHertz (THz) channels, crucial for enabling 6G. Nevertheless, XL-arrays introduce deviations in electromagnetic propagation compared to traditional arrays, fundamentally challenging the assumption with the planar-wave model. Instead, it ushers in the spherical-wave (SW) model to accurately represent the near-field propagation characteristics, significantly increasing signal processing complexity. Fortunately, the SW model shows remarkable benefits on sensing and communications (S\&C), e.g., improving communication multiplexing capability, spatial resolution, and degrees of freedom. In this context, this article first overviews hardware/algorithm challenges, fundamental potentials, promising applications of near-field S\&C enabled by XL-arrays. To overcome the limitations of existing XL-arrays with dense uniform array layouts and improve S\&C applications, we introduce sparse arrays (SAs). Exploring their potential, we propose XL-SAs for mmWave/THz systems using multi-subarray designs. Finally, several applications, challenges and resarch directions are identified.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here