Enhancing In-Situ Structural Health Monitoring through RF Energy-Powered Sensor Nodes and Mobile Platform

20 Aug 2023  ·  Yu Luo, Lina Pu, Jun Wang, Isaac Howard ·

This research contributes to long-term structural health monitoring (SHM) by exploring radio frequency energy-powered sensor nodes (RF-SNs) embedded in concrete. Unlike traditional in-situ monitoring systems relying on batteries or wire-connected power sources, the RF-SN captures radio energy from a mobile radio transmitter for sensing and communication. This offers a cost-effective solution for consistent in-situ perception. To optimize the system performance across various situations, we've explored both active and passive communication methods. For the active RF-SN, we implement a specialized control circuit enabling the node to transmit data through ZigBee protocol at low incident power. For the passive RF-SN, radio energy is not only for power but also as a carrier signal, with data conveyed by modulating the amplitude of the backscattered radio wave. To address the challenge of significant attenuation of the backscattering signal in concrete, we utilize a square chirp-based modulation scheme for passive communication. This scheme allows the receiver to successfully decode the data even under a negative signal-to-noise ratio (SNR) condition. The experimental results indicate that an active RF-SN embedded in concrete at a depth of 13.5 cm can be effectively powered by a 915MHz mobile radio transmitter with an effective isotropic radiated power (EIRP) of 32.5dBm. This setup allows the RF-SN to send over 1 kilobyte of data within 10 seconds, with an additional 1.7 kilobytes every 1.6 seconds of extra charging. For the passive RF-SN buried at the same depth, continuous data transmission at a rate of 224 bps with a 3% bit error rate (BER) is achieved when the EIRP of the transmitter is 23.6 dBm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here