Enhancements for 5G NR PRACH Reception: An AI/ML Approach

12 Jan 2024  ·  Rohit Singh, Anil Kumar Yerrapragada, Jeeva Keshav S, Radha Krishna Ganti ·

Random Access is an important step in enabling the initial attachment of a User Equipment (UE) to a Base Station (gNB). The UE identifies itself by embedding a Preamble Index (RAPID) in the phase rotation of a known base sequence, which it transmits on the Physical Random Access Channel (PRACH). The signal on the PRACH also enables the estimation of propagation delay, often known as Timing Advance (TA), which is induced by virtue of the UE's position. Traditional receivers estimate the RAPID and TA using correlation-based techniques. This paper presents an alternative receiver approach that uses AI/ML models, wherein two neural networks are proposed, one for the RAPID and one for the TA. Different from other works, these two models can run in parallel as opposed to sequentially. Experiments with both simulated data and over-the-air hardware captures highlight the improved performance of the proposed AI/ML-based techniques compared to conventional correlation methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods