EnergyNet: Energy-Efficient Dynamic Inference

The prohibitive energy cost of running high-performance Convolutional Neural Networks (CNNs) has been limiting their deployment on resource-constrained platforms including mobile and wearable devices. We propose a CNN for energy-aware dynamic routing, called the EnergyNet, that achieves adaptive-complexity inference based on the inputs, leading to an overall reduction of run time energy cost without noticeably losing (or even improving) accuracy. That is achieved by proposing an energy loss that captures both computational and data movement costs. We combine it with the accuracy-oriented loss, and learn a dynamic routing policy for skipping certain layers in the networks, that optimizes the hybrid loss. Our empirical results demonstrate that, compared to the baseline CNNs, EnergyNetcan trim down the energy cost up to 40% and 65%, during inference on the CIFAR10 and Tiny ImageNet testing sets, respectively, while maintaining the same testing accuracies. It is further encouraging to observe that the energy awareness might serve as a training regularization and can even improve prediction accuracy: our models can achieve 0.7% higher top-1 testing accuracy than the baseline on CIFAR-10 when saving up to 27% energy, and 1.0% higher top-5 testing accuracy on Tiny ImageNet when saving up to 50% energy, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here