Energy Storage Management via Deep Q-Networks

26 Mar 2019  ·  Ahmed S. Zamzam, Bo Yang, Nicholas D. Sidiropoulos ·

Energy storage devices represent environmentally friendly candidates to cope with volatile renewable energy generation. Motivated by the increase in privately owned storage systems, this paper studies the problem of real-time control of a storage unit co-located with a renewable energy generator and an inelastic load. Unlike many approaches in the literature, no distributional assumptions are being made on the renewable energy generation or the real-time prices. Building on the deep Q-networks algorithm, a reinforcement learning approach utilizing a neural network is devised where the storage unit operational constraints are respected. The neural network approximates the action-value function which dictates what action (charging, discharging, etc.) to take. Simulations indicate that near-optimal performance can be attained with the proposed learning-based control policy for the storage units.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here