End-to-End Incremental Learning

Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model -a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and ImageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.

PDF Abstract ECCV 2018 PDF ECCV 2018 Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Incremental Learning ImageNet - 10 steps E2E Average Incremental Accuracy Top-5 72.09 # 6
Final Accuracy Top-5 52.29 # 6
# M Params 11.68 # 2

Results from Other Papers


Task Dataset Model Metric Name Metric Value Rank Source Paper Compare
Incremental Learning ImageNet100 - 10 steps E2E Average Incremental Accuracy Top-5 89.92 # 8
Final Accuracy Top-5 80.29 # 8
# M Params 11.22 # 2

Methods


No methods listed for this paper. Add relevant methods here