Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization

In this paper, millimeter wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for Unmanned Aerial Vehicles (UAVs) assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 feet to 23.5 feet in increments of 2 feet were considered in this experiment. At each distance point, 3 samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around -20 Hz and +20 Hz at the noise floor of -60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next generation UAV-assisted wireless communication systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here