Empowering Autonomous Driving with Large Language Models: A Safety Perspective

Autonomous Driving (AD) encounters significant safety hurdles in long-tail unforeseen driving scenarios, largely stemming from the non-interpretability and poor generalization of the deep neural networks within the AD system, particularly in out-of-distribution and uncertain data. To this end, this paper explores the integration of Large Language Models (LLMs) into AD systems, leveraging their robust common-sense knowledge and reasoning abilities. The proposed methodologies employ LLMs as intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning, for enhancing driving performance and safety. We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine. Demonstrating superior performance and safety metrics compared to state-of-the-art approaches, our approach shows the promising potential for using LLMs for autonomous vehicles.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here