Embedding Tarskian Semantics in Vector Spaces

9 Mar 2017  ·  Taisuke Sato ·

We propose a new linear algebraic approach to the computation of Tarskian semantics in logic. We embed a finite model M in first-order logic with N entities in N-dimensional Euclidean space R^N by mapping entities of M to N dimensional one-hot vectors and k-ary relations to order-k adjacency tensors (multi-way arrays). Second given a logical formula F in prenex normal form, we compile F into a set Sigma_F of algebraic formulas in multi-linear algebra with a nonlinear operation. In this compilation, existential quantifiers are compiled into a specific type of tensors, e.g., identity matrices in the case of quantifying two occurrences of a variable. It is shown that a systematic evaluation of Sigma_F in R^N gives the truth value, 1(true) or 0(false), of F in M. Based on this framework, we also propose an unprecedented way of computing the least models defined by Datalog programs in linear spaces via matrix equations and empirically show its effectiveness compared to state-of-the-art approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here