Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks

26 May 2022  ·  Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang ·

Understanding the relation between deep and shallow neural networks is extremely important for the theoretical study of deep learning. In this work, we discover an embedding principle in depth that loss landscape of an NN "contains" all critical points of the loss landscapes for shallower NNs. The key tool for our discovery is the critical lifting operator proposed in this work that maps any critical point of a network to critical manifolds of any deeper network while preserving the outputs. This principle provides new insights to many widely observed behaviors of DNNs. Regarding the easy training of deep networks, we show that local minimum of an NN can be lifted to strict saddle points of a deeper NN. Regarding the acceleration effect of batch normalization, we demonstrate that batch normalization helps avoid the critical manifolds lifted from shallower NNs by suppressing layer linearization. We also prove that increasing training data shrinks the lifted critical manifolds, which can result in acceleration of training as demonstrated in experiments. Overall, our discovery of the embedding principle in depth uncovers the depth-wise hierarchical structure of deep learning loss landscape, which serves as a solid foundation for the further study about the role of depth for DNNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods