ElasticLaneNet: An Efficient Geometry-Flexible Approach for Lane Detection

16 Dec 2023  ·  Yaxin Feng, Yuan Lan, Luchan Zhang, Yang Xiang ·

The task of lane detection involves identifying the boundaries of driving areas in real-time. Recognizing lanes with variable and complex geometric structures remains a challenge. In this paper, we explore a novel and flexible way of implicit lanes representation named \textit{Elastic Lane map (ELM)}, and introduce an efficient physics-informed end-to-end lane detection framework, namely, ElasticLaneNet (Elastic interaction energy-informed Lane detection Network). The approach considers predicted lanes as moving zero-contours on the flexibly shaped \textit{ELM} that are attracted to the ground truth guided by an elastic interaction energy-loss function (EIE loss). Our framework well integrates the global information and low-level features. The method performs well in complex lane scenarios, including those with large curvature, weak geometry features at intersections, complicated cross lanes, Y-shapes lanes, dense lanes, etc. We apply our approach on three datasets: SDLane, CULane, and TuSimple. The results demonstrate exceptional performance of our method, with the state-of-the-art results on the structurally diverse SDLane, achieving F1-score of 89.51, Recall rate of 87.50, and Precision of 91.61 with fast inference speed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here