For offering proactive services to students in intelligent education, one of the fundamental tasks is predicting their performance (e.g., scores) on future exercises, where it is necessary to track each student's knowledge acquisition during her exercising activities. However, existing approaches can only exploit the exercising records of students, and the problem of extracting rich information existed in the exercise's materials (e.g., knowledge concepts, exercise content) to achieve both precise predictions of student performance and interpretable analysis of knowledge acquisition remains underexplored... (read more)
PDF