EfficientViT: Lightweight Multi-Scale Attention for High-Resolution Dense Prediction

ICCV 2023  ·  Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han ·

High-resolution dense prediction enables many appealing real-world applications, such as computational photography, autonomous driving, etc. However, the vast computational cost makes deploying state-of-the-art high-resolution dense prediction models on hardware devices difficult. This work presents EfficientViT, a new family of high-resolution vision models with novel lightweight multi-scale attention. Unlike prior high-resolution dense prediction models that rely on heavy self-attention, hardware-inefficient large-kernel convolution, or complicated topology structure to obtain good performances, our lightweight multi-scale attention achieves a global receptive field and multi-scale learning (two critical features for high-resolution dense prediction) with only lightweight and hardware-efficient operations. As such, EfficientViT delivers remarkable performance gains over previous state-of-the-art high-resolution dense prediction models with significant speedup on diverse hardware platforms, including mobile CPU, edge GPU, and cloud GPU. Without performance loss on Cityscapes, our EfficientViT provides up to 8.8x and 3.8x GPU latency reduction over SegFormer and SegNeXt, respectively. For super-resolution, EfficientViT provides up to 6.4x speedup over Restormer while providing 0.11dB gain in PSNR.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods