Efficient Vertical Federated Learning with Secure Aggregation

The majority of work in privacy-preserving federated learning (FL) has been focusing on horizontally partitioned datasets where clients share the same sets of features and can train complete models independently. However, in many interesting problems, such as financial fraud detection and disease detection, individual data points are scattered across different clients/organizations in vertical federated learning. Solutions for this type of FL require the exchange of gradients between participants and rarely consider privacy and security concerns, posing a potential risk of privacy leakage. In this work, we present a novel design for training vertical FL securely and efficiently using state-of-the-art security modules for secure aggregation. We demonstrate empirically that our method does not impact training performance whilst obtaining 9.1e2 ~3.8e4 speedup compared to homomorphic encryption (HE).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here