Efficient Structure-preserving Support Tensor Train Machine

12 Feb 2020  ·  Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner ·

An increasing amount of collected data are high-dimensional multi-way arrays (tensors), and it is crucial for efficient learning algorithms to exploit this tensorial structure as much as possible. The ever-present curse of dimensionality for high dimensional data and the loss of structure when vectorizing the data motivates the use of tailored low-rank tensor classification methods. In the presence of small amounts of training data, kernel methods offer an attractive choice as they provide the possibility for a nonlinear decision boundary. We develop the Tensor Train Multi-way Multi-level Kernel (TT-MMK), which combines the simplicity of the Canonical Polyadic decomposition, the classification power of the Dual Structure-preserving Support Vector Machine, and the reliability of the Tensor Train (TT) approximation. We show by experiments that the TT-MMK method is usually more reliable computationally, less sensitive to tuning parameters, and gives higher prediction accuracy in the SVM classification when benchmarked against other state-of-the-art techniques.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods