Efficient Semi-Supervised Federated Learning for Heterogeneous Participants

29 Jul 2023  ·  Zhipeng Sun, Yang Xu, Hongli Xu, Zhiyuan Wang, Yunming Liao ·

Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data. However, training and deploying large-scale models on resource-constrained clients is challenging. Fortunately, Split Federated Learning (SFL) offers a feasible solution by alleviating the computation and/or communication burden on clients. However, existing SFL works often assume sufficient labeled data on clients, which is usually impractical. Besides, data non-IIDness across clients poses another challenge to ensure efficient model training. To our best knowledge, the above two issues have not been simultaneously addressed in SFL. Herein, we propose a novel Semi-SFL system, which incorporates clustering regularization to perform SFL under the more practical scenario with unlabeled and non-IID client data. Moreover, our theoretical and experimental investigations into model convergence reveal that the inconsistent training processes on labeled and unlabeled data have an influence on the effectiveness of clustering regularization. To this end, we develop a control algorithm for dynamically adjusting the global updating frequency, so as to mitigate the training inconsistency and improve training performance. Extensive experiments on benchmark models and datasets show that our system provides a 3.0x speed-up in training time and reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.1% improvement in accuracy under non-IID scenarios compared to the state-of-the-art baselines.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here