Efficient Representations for Life-Long Learning and Autoencoding

6 Nov 2014  ·  Maria-Florina Balcan, Avrim Blum, Santosh Vempala ·

It has been a long-standing goal in machine learning, as well as in AI more generally, to develop life-long learning systems that learn many different tasks over time, and reuse insights from tasks learned, "learning to learn" as they do so. In this work we pose and provide efficient algorithms for several natural theoretical formulations of this goal. Specifically, we consider the problem of learning many different target functions over time, that share certain commonalities that are initially unknown to the learning algorithm. Our aim is to learn new internal representations as the algorithm learns new target functions, that capture this commonality and allow subsequent learning tasks to be solved more efficiently and from less data. We develop efficient algorithms for two very different kinds of commonalities that target functions might share: one based on learning common low-dimensional and unions of low-dimensional subspaces and one based on learning nonlinear Boolean combinations of features. Our algorithms for learning Boolean feature combinations additionally have a dual interpretation, and can be viewed as giving an efficient procedure for constructing near-optimal sparse Boolean autoencoders under a natural "anchor-set" assumption.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here