Efficient Recursive Data-enabled Predictive Control (Extended Version)

24 Sep 2023  ·  Jicheng Shi, Yingzhao Lian, Colin N. Jones ·

In the field of model predictive control, Data-enabled Predictive Control (DeePC) offers direct predictive control, bypassing traditional modeling. However, challenges emerge with increased computational demand due to recursive data updates. This paper introduces a novel recursive updating algorithm for DeePC. It emphasizes the use of Singular Value Decomposition (SVD) for efficient low-dimensional transformations of DeePC in its general form, as well as a fast SVD update scheme. Importantly, our proposed algorithm is highly flexible due to its reliance on the general form of DeePC, which is demonstrated to encompass various data-driven methods that utilize Pseudoinverse and Hankel matrices. This is exemplified through a comparison to Subspace Predictive Control, where the algorithm achieves asymptotically consistent prediction for stochastic linear time-invariant systems. Our proposed methodologies' efficacy is validated through simulation studies.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here