Efficient Motion Modelling with Variable-sized blocks from Hierarchical Cuboidal Partitioning

28 Aug 2022  ·  Priyabrata Karmakar, Manzur Murshed, Manoranjan Paul, David Taubman ·

Motion modelling with block-based architecture has been widely used in video coding where a frame is divided into fixed-sized blocks that are motion compensated independently. This often leads to coding inefficiency as fixed-sized blocks hardly align with the object boundaries. Although hierarchical block-partitioning has been introduced to address this, the increased number of motion vectors limits the benefit. Recently, approximate segmentation of images with cuboidal partitioning has gained popularity. Not only are the variable-sized rectangular segments (cuboids) readily amenable to block-based image/video coding techniques, but they are also capable of aligning well with the object boundaries. This is because cuboidal partitioning is based on a homogeneity constraint, minimising the sum of squared errors (SSE). In this paper, we have investigated the potential of cuboids in motion modelling against the fixed-sized blocks used in scalable video coding. Specifically, we have constructed motion-compensated current frame using the cuboidal partitioning information of the anchor frame in a group-of-picture (GOP). The predicted current frame has then been used as the base layer while encoding the current frame as an enhancement layer using the scalable HEVC encoder. Experimental results confirm 6.71%-10.90% bitrate savings on 4K video sequences.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods