Efficient Learning of Fuzzy Logic Systems for Large-Scale Data Using Deep Learning

19 Apr 2024  ·  Ata Koklu, Yusuf Guven, Tufan Kumbasar ·

Type-1 and Interval Type-2 (IT2) Fuzzy Logic Systems (FLS) excel in handling uncertainty alongside their parsimonious rule-based structure. Yet, in learning large-scale data challenges arise, such as the curse of dimensionality and training complexity of FLSs. The complexity is due mainly to the constraints to be satisfied as the learnable parameters define FSs and the complexity of the center of the sets calculation method, especially of IT2-FLSs. This paper explicitly focuses on the learning problem of FLSs and presents a computationally efficient learning method embedded within the realm of Deep Learning (DL). The proposed method tackles the learning challenges of FLSs by presenting computationally efficient implementations of FLSs, thereby minimizing training time while leveraging mini-batched DL optimizers and automatic differentiation provided within the DL frameworks. We illustrate the efficiency of the DL framework for FLSs on benchmark datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here