Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models

4 Oct 2023  ·  Zihao Lin, Yan Sun, Yifan Shi, Xueqian Wang, Lifu Huang, Li Shen, DaCheng Tao ·

With the blowout development of pre-trained models (PTMs), the efficient tuning of these models for diverse downstream applications has emerged as a pivotal research concern. Although recent investigations into prompt tuning have provided promising avenues, three salient challenges persist: (1) memory constraint: the continuous growth in the size of open-source PTMs renders fine-tuning, even a fraction of their parameters, challenging for many practitioners. (2) model privacy: existing PTMs often function as public API services, with their parameters inaccessible for effective or tailored fine-tuning. (3) data privacy: the fine-tuning of PTMs necessitates high-quality datasets, which are typically localized and not shared to public. To optimally harness each local dataset while navigating memory constraints and preserving privacy, we propose Federated Black-Box Prompt Tuning (Fed-BBPT). This innovative approach eschews reliance on parameter architectures and private dataset access, instead capitalizing on a central server that aids local users in collaboratively training a prompt generator through regular aggregation. Local users leverage API-driven learning via a zero-order optimizer, obviating the need for PTM deployment. Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines, tapping into comprehensive, high-quality, yet private training datasets. A thorough evaluation across 40 datasets spanning CV and NLP tasks underscores the robustness of our proposed model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here