Efficient Deep CNN-BiLSTM Model for Network Intrusion Detection

26 Jun 2020  ·  Jay Sinha, Manollas M ·

The need for Network Intrusion Detection systems has risen since usage of cloud technologies has become mainstream. With the ever growing network traffic, Network Intrusion Detection is a critical part of network security and a very efficient NIDS is a must, given new variety of attack arises frequently. These Intrusion Detection systems are built on either a pattern matching system or AI/ML based anomaly detection system. Pattern matching methods usually have a high False Positive Rates whereas the AI/ML based method, relies on finding metric/feature or correlation between set of metrics/features to predict the possibility of an attack. The most common of these is KNN, SVM etc., operate on a limited set of features and have less accuracy and still suffer from higher False Positive Rates. In this paper, we propose a deep learning model combining the distinct strengths of a Convolutional Neural Network and a Bi-directional LSTM to incorporate learning of spatial and temporal features of the data. For this paper, we use publicly available datasets NSL-KDD and UNSW-NB15 to train and test the model. The proposed model offers a high detection rate and comparatively lower False Positive Rate. The proposed model performs better than many state-of-the-art Network Intrusion Detection systems leveraging Machine Learning/Deep Learning models.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods