Edge-based Parametric Digital Twins for Intelligent Building Indoor Climate Modeling

7 Mar 2024  ·  Zhongjun Ni, Chi Zhang, Magnus Karlsson, Shaofang Gong ·

Digital transformation in the built environment generates vast data for developing data-driven models to optimize building operations. This study presents an integrated solution utilizing edge computing, digital twins, and deep learning to enhance the understanding of climate in buildings. Parametric digital twins, created using an ontology, ensure consistent data representation across diverse service systems equipped by different buildings. Based on created digital twins and collected data, deep learning methods are employed to develop predictive models for identifying patterns in indoor climate and providing insights. Both the parametric digital twin and deep learning models are deployed on edge for low latency and privacy compliance. As a demonstration, a case study was conducted in a historic building in \"Osterg\"otland, Sweden, to compare the performance of five deep learning architectures. The results indicate that the time-series dense encoder model exhibited strong competitiveness in performing multi-horizon forecasts of indoor temperature and relative humidity with low computational costs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here