EAPruning: Evolutionary Pruning for Vision Transformers and CNNs

1 Oct 2022  ·  Qingyuan Li, Bo Zhang, Xiangxiang Chu ·

Structured pruning greatly eases the deployment of large neural networks in resource-constrained environments. However, current methods either involve strong domain expertise, require extra hyperparameter tuning, or are restricted only to a specific type of network, which prevents pervasive industrial applications. In this paper, we undertake a simple and effective approach that can be easily applied to both vision transformers and convolutional neural networks. Specifically, we consider pruning as an evolution process of sub-network structures that inherit weights through reconstruction techniques. We achieve a 50% FLOPS reduction for ResNet50 and MobileNetV1, leading to 1.37x and 1.34x speedup respectively. For DeiT-Base, we reach nearly 40% FLOPs reduction and 1.4x speedup. Our code will be made available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods