E3-targetPred: Prediction of E3-Target Proteins Using Deep Latent Space Encoding

26 Jun 2020  ·  Seongyong Park, Shujaat Khan, Abdul Wahab ·

Understanding E3 ligase and target substrate interactions are important for cell biology and therapeutic development. However, experimental identification of E3 target relationships is not an easy task due to the labor-intensive nature of the experiments. In this article, a sequence-based E3-target prediction model is proposed for the first time. The proposed framework utilizes composition of k-spaced amino acid pairs (CKSAAP) to learn the relationship between E3 ligases and their target protein. A class separable latent space encoding scheme is also devised that provides a compressed representation of feature space. A thorough ablation study is performed to identify an optimal gap size for CKSAAP and the number of latent variables that can represent the E3-target relationship successfully. The proposed scheme is evaluated on an independent dataset for a variety of standard quantitative measures. In particular, it achieves an average accuracy of $70.63\%$ on an independent dataset. The source code and datasets used in the study are available at the author's GitHub page (https://github.com/psychemistz/E3targetPred).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here