Dynamic PET Image Reconstruction Using Nonnegative Matrix Factorization Incorporated With Deep Image Prior

We propose a method that reconstructs dynamic positron emission tomography (PET) images from given sinograms by using non-negative matrix factorization (NMF) incorporated with a deep image prior (DIP) for appropriately constraining the spatial patterns of resultant images. The proposed method can reconstruct dynamic PET images with higher signal-to-noise ratio (SNR) and blindly decompose an image matrix into pairs of spatial and temporal factors. The former represent homogeneous tissues with different kinetic parameters and the latter represent the time activity curves that are observed in the corresponding homogeneous tissues. We employ U-Nets combined in parallel for DIP and each of the U-nets is used to extract each spatial factor decomposed from the data matrix. Experimental results show that the proposed method outperforms conventional methods and can extract spatial factors that represent the homogeneous tissues.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here