Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video

30 Apr 2014  ·  Jacob Grosek, J. Nathan Kutz ·

This paper introduces the method of dynamic mode decomposition (DMD) for robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. The method is a novel application of a technique used for characterizing nonlinear dynamical systems in an equation-free manner by decomposing the state of the system into low-rank terms whose Fourier components in time are known. DMD terms with Fourier frequencies near the origin (zero-modes) are interpreted as background (low-rank) portions of the given video frames, and the terms with Fourier frequencies bounded away from the origin are their sparse counterparts. An approximate low-rank/sparse separation is achieved at the computational cost of just one singular value decomposition and one linear equation solve, thus producing results orders of magnitude faster than a leading separation method, namely robust principal component analysis (RPCA). The DMD method that is developed here is demonstrated to work robustly in real-time with personal laptop-class computing power and without any parameter tuning, which is a transformative improvement in performance that is ideal for video surveillance and recognition applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here