Dynamic Frame skip Deep Q Network

Deep Reinforcement Learning methods have achieved state of the art performance in learning control policies for the games in the Atari 2600 domain. One of the important parameters in the Arcade Learning Environment (ALE) is the frame skip rate... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Double Q-learning
Off-Policy TD Control
Dense Connections
Feedforward Networks
Convolution
Convolutions
Dueling Network
Q-Learning Networks