Dynamic Environment Mapping for Augmented Reality Applications on Mobile Devices

21 Sep 2018  ·  Rafael Monroy, Matis Hudon, Aljosa Smolic ·

Augmented Reality is a topic of foremost interest nowadays. Its main goal is to seamlessly blend virtual content in real-world scenes. Due to the lack of computational power in mobile devices, rendering a virtual object with high-quality, coherent appearance and in real-time, remains an area of active research. In this work, we present a novel pipeline that allows for coupled environment acquisition and virtual object rendering on a mobile device equipped with a depth sensor. While keeping human interaction to a minimum, our system can scan a real scene and project it onto a two-dimensional environment map containing RGB+Depth data. Furthermore, we define a set of criteria that allows for an adaptive update of the environment map to account for dynamic changes in the scene. Then, under the assumption of diffuse surfaces and distant illumination, our method exploits an analytic expression for the irradiance in terms of spherical harmonic coefficients, which leads to a very efficient rendering algorithm. We show that all the processes in our pipeline can be executed while maintaining an average frame rate of 31Hz on a mobile device.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here