Dynamic Backtracking in GFlowNets: Enhancing Decision Steps with Reward-Dependent Adjustment Mechanisms

8 Apr 2024  ·  Shuai Guo, Jielei Chu, Lei Zhu, Zhaoyu Li, Tianrui Li ·

Generative Flow Networks (GFlowNets or GFNs) are probabilistic models predicated on Markov flows, and they employ specific amortization algorithms to learn stochastic policies that generate compositional substances including biomolecules, chemical materials, etc. With a strong ability to generate high-performance biochemical molecules, GFNs accelerate the discovery of scientific substances, effectively overcoming the time-consuming, labor-intensive, and costly shortcomings of conventional material discovery methods. However, previous studies rarely focus on accumulating exploratory experience by adjusting generative structures, which leads to disorientation in complex sampling spaces. Efforts to address this issue, such as LS-GFN, are limited to local greedy searches and lack broader global adjustments. This paper introduces a novel variant of GFNs, the Dynamic Backtracking GFN (DB-GFN), which improves the adaptability of decision-making steps through a reward-based dynamic backtracking mechanism. DB-GFN allows backtracking during the network construction process according to the current state's reward value, thereby correcting disadvantageous decisions and exploring alternative pathways during the exploration process. When applied to generative tasks involving biochemical molecules and genetic material sequences, DB-GFN outperforms GFN models such as LS-GFN and GTB, as well as traditional reinforcement learning methods, in sample quality, sample exploration quantity, and training convergence speed. Additionally, owing to its orthogonal nature, DB-GFN shows great potential in future improvements of GFNs, and it can be integrated with other strategies to achieve higher search performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods