Dynamic and Static Context-aware LSTM for Multi-agent Motion Prediction

Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (\textit{e.g.} pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spatial interactions represented by the positions of a group of pedestrians, while ignoring their temporal coherence (\textit{i.e.} dependencies between different long trajectories), or by understanding the complicated scene layout (\textit{e.g.} scene segmentation) to ensure safe navigation... (read more)

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper