DVC: An End-to-end Deep Video Compression Framework

Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture in the conventional video compression method and the powerful non-linear representation ability of neural networks, we propose the first end-to-end video compression deep model that jointly optimizes all the components for video compression... (read more)

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet