Duality-Gated Mutual Condition Network for RGBT Tracking

14 Nov 2020  ·  Andong Lu, Cun Qian, Chenglong Li, Jin Tang, Liang Wang ·

Low-quality modalities contain not only a lot of noisy information but also some discriminative features in RGBT tracking. However, the potentials of low-quality modalities are not well explored in existing RGBT tracking algorithms. In this work, we propose a novel duality-gated mutual condition network to fully exploit the discriminative information of all modalities while suppressing the effects of data noise. In specific, we design a mutual condition module, which takes the discriminative information of a modality as the condition to guide feature learning of target appearance in another modality. Such module can effectively enhance target representations of all modalities even in the presence of low-quality modalities. To improve the quality of conditions and further reduce data noise, we propose a duality-gated mechanism and integrate it into the mutual condition module. To deal with the tracking failure caused by sudden camera motion, which often occurs in RGBT tracking, we design a resampling strategy based on optical flow algorithms. It does not increase much computational cost since we perform optical flow calculation only when the model prediction is unreliable and then execute resampling when the sudden camera motion is detected. Extensive experiments on four RGBT tracking benchmark datasets show that our method performs favorably against the state-of-the-art tracking algorithms

PDF Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Rgb-T Tracking LasHeR DMCNet Precision 49.0 # 22
Success 35.5 # 22
Rgb-T Tracking RGBT234 DMCNet Precision 83.9 # 19
Success 59.3 # 20

Methods


No methods listed for this paper. Add relevant methods here