Dual parametric and state estimation for partial differential equations

19 Dec 2023  ·  Saviz Mowlavi, Mouhacine Benosman ·

Designing estimation algorithms for systems governed by partial differential equations (PDEs) such as fluid flows is challenging due to the high-dimensional and oftentimes nonlinear nature of the dynamics, as well as their dependence on unobserved physical parameters. In this paper, we propose two different lightweight and effective methodologies for real-time state estimation of PDEs in the presence of parametric uncertainties. Both approaches combine a Kalman filter with a data-driven polytopic linear reduced-order model obtained by dynamic mode decomposition (DMD). Using examples involving the nonlinear Burgers and Navier-Stokes equations, we demonstrate accurate estimation of both the state and the unknown physical parameter along system trajectories corresponding to various physical parameter values.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here