Dual-Neighborhood Deep Fusion Network for Point Cloud Analysis

20 Aug 2021  ·  Guoquan Xu, Hezhi Cao, Yifan Zhang, Jianwei Wan, Ke Xu, Yanxin Ma ·

Recently, deep neural networks have made remarkable achievements in 3D point cloud classification. However, existing classification methods are mainly implemented on idealized point clouds and suffer heavy degradation of per-formance on non-idealized scenarios. To handle this prob-lem, a feature representation learning method, named Dual-Neighborhood Deep Fusion Network (DNDFN), is proposed to serve as an improved point cloud encoder for the task of non-idealized point cloud classification. DNDFN utilizes a trainable neighborhood learning method called TN-Learning to capture the global key neighborhood. Then, the global neighborhood is fused with the local neighbor-hood to help the network achieve more powerful reasoning ability. Besides, an Information Transfer Convolution (IT-Conv) is proposed for DNDFN to learn the edge infor-mation between point-pairs and benefits the feature transfer procedure. The transmission of information in IT-Conv is similar to the propagation of information in the graph which makes DNDFN closer to the human reasoning mode. Extensive experiments on existing benchmarks especially non-idealized datasets verify the effectiveness of DNDFN and DNDFN achieves the state of the arts.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods