Drift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule

9 Feb 2018  ·  Youhei Akimoto, Anne Auger, Tobias Glasmachers ·

This paper explores the use of the standard approach for proving runtime bounds in discrete domains---often referred to as drift analysis---in the context of optimization on a continuous domain. Using this framework we analyze the (1+1) Evolution Strategy with one-fifth success rule on the sphere function. To deal with potential functions that are not lower-bounded, we formulate novel drift theorems. We then use the theorems to prove bounds on the expected hitting time to reach a certain target fitness in finite dimension $d$. The bounds are akin to linear convergence. We then study the dependency of the different terms on $d$ proving a convergence rate dependency of $\Theta(1/d)$. Our results constitute the first non-asymptotic analysis for the algorithm considered as well as the first explicit application of drift analysis to a randomized search heuristic with continuous domain.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here