DreamDA: Generative Data Augmentation with Diffusion Models

19 Mar 2024  ·  Yunxiang Fu, Chaoqi Chen, Yu Qiao, Yizhou Yu ·

The acquisition of large-scale, high-quality data is a resource-intensive and time-consuming endeavor. Compared to conventional Data Augmentation (DA) techniques (e.g. cropping and rotation), exploiting prevailing diffusion models for data generation has received scant attention in classification tasks. Existing generative DA methods either inadequately bridge the domain gap between real-world and synthesized images, or inherently suffer from a lack of diversity. To solve these issues, this paper proposes a new classification-oriented framework DreamDA, which enables data synthesis and label generation by way of diffusion models. DreamDA generates diverse samples that adhere to the original data distribution by considering training images in the original data as seeds and perturbing their reverse diffusion process. In addition, since the labels of the generated data may not align with the labels of their corresponding seed images, we introduce a self-training paradigm for generating pseudo labels and training classifiers using the synthesized data. Extensive experiments across four tasks and five datasets demonstrate consistent improvements over strong baselines, revealing the efficacy of DreamDA in synthesizing high-quality and diverse images with accurate labels. Our code will be available at https://github.com/yunxiangfu2001/DreamDA.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods