DrDisco: Deep Registration for Distortion Correction of Diffusion MRI with single phase-encoding

1 Apr 2023  ·  Zhangxing Bian, Muhan Shao, Aaron Carass, Jerry L. Prince ·

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive way of imaging white matter tracts in the human brain. DW-MRIs are usually acquired using echo-planar imaging (EPI) with high gradient fields, which could introduce severe geometric distortions that interfere with further analyses. Most tools for correcting distortion require two minimally weighted DW-MRI images (B0) acquired with different phase-encoding directions, and they can take hours to process per subject. Since a great amount of diffusion data are only acquired with a single phase-encoding direction, the application of existing approaches is limited. We propose a deep learning-based registration approach to correct distortion using only the B0 acquired from a single phase-encoding direction. Specifically, we register undistorted T1-weighted images and distorted B0 to remove the distortion through a deep learning model. We apply a differentiable mutual information loss during training to improve inter-modality alignment. Experiments on the Human Connectome Project dataset show the proposed method outperforms SyN and VoxelMorph on several metrics, and only takes a few seconds to process one subject.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods