Divide and Conquer: Towards Better Embedding-based Retrieval for Recommender Systems From a Multi-task Perspective

6 Feb 2023  ·  Yuan Zhang, Xue Dong, Weijie Ding, Biao Li, Peng Jiang, Kun Gai ·

Embedding-based retrieval (EBR) methods are widely used in modern recommender systems thanks to its simplicity and effectiveness. However, along the journey of deploying and iterating on EBR in production, we still identify some fundamental issues in existing methods. First, when dealing with large corpus of candidate items, EBR models often have difficulties in balancing the performance on distinguishing highly relevant items (positives) from both irrelevant ones (easy negatives) and from somewhat related yet not competitive ones (hard negatives). Also, we have little control in the diversity and fairness of the retrieval results because of the ``greedy'' nature of nearest vector search. These issues compromise the performance of EBR methods in large-scale industrial scenarios. This paper introduces a simple and proven-in-production solution to overcome these issues. The proposed solution takes a divide-and-conquer approach: the whole set of candidate items are divided into multiple clusters and we run EBR to retrieve relevant candidates from each cluster in parallel; top candidates from each cluster are then combined by some controllable merging strategies. This approach allows our EBR models to only concentrate on discriminating positives from mostly hard negatives. It also enables further improvement from a multi-tasking learning (MTL) perspective: retrieval problems within each cluster can be regarded as individual tasks; inspired by recent successes in prompting and prefix-tuning, we propose an efficient task adaption technique further boosting the retrieval performance within each cluster with negligible overheads.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here